AD-on-LSMC for MVA and CVA Greeks: Simplifications and Efficiencies

Andrew McClelland and Serguei Issakov Quantitative Research, Numerix

Alexander Antonov Quantitative Research, Standard Chartered

QuantMinds International, Lisbon

May 17, 2018

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} (V(t))^+ \, \lambda(t) \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_{0} \left[\int_{0}^{T} e^{-R(t)} (V(t))^{+} \lambda(t) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} (V(t))^+ \lambda(t) \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_{0} \left[\int_{0}^{T} e^{-R(t)} (V(t))^{+} \lambda(t) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T \left(\mathbf{V}(t) \right)^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_0 \left[\int_0^T e^{-R(t)} (V(t))^+ \lambda(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_{0} \left[\int_{0}^{T} e^{-R(t)} (V(t))^{+} \lambda(t) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_0 \left[\int_0^T e^{-R(t)} (V(t))^+ \lambda(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_{0} \left[\int_{0}^{T} (V(t))^{+} dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_{0} \left[\int_{0}^{T} (V(t))^{+} dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \partial_{\theta} \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \partial_{\theta} (V(t))^{+} dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T \mathbf{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T e^{-R(t)} \mathsf{IM}(t) \, s(t) \, dt\right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(t) \, dt\right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt\right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t), \partial_\theta Q(t)) \, dt\right]$$

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Overview

Outline

Future Greeks by AD in the LSMC Context 1

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t), \partial_\theta Q(t)) \, dt \right]$$

Overview

Outline

Future Greeks by AD in the LSMC Context 1

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t), \partial_\theta Q(t)) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (V_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_ heta V(t), \partial_ heta Q(t)) \, dt
ight]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (V_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_ heta V(t), \partial_ heta Q(t)) \, dt
ight]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (V_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_ heta V(t), \partial_ heta Q(t)) \, dt
ight]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (\hat{\mathbf{V}}_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_ heta V(t), \partial_ heta Q(t)) \, dt
ight]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (\hat{V}_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_ heta V(t), \partial_ heta Q(t)) \, dt
ight]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (\hat{V}_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T \mathbf{1}_{(V(t)>0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t), \partial_\theta Q(t)) \, dt \right]$$

Overview Outline

Future Greeks by AD in the LSMC Context 1

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (\hat{V}_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \mathsf{CVA} \approx \frac{1}{N_P} \sum_{p=1}^{N_P} \sum_{i=1}^{N_T} \mathbb{1}_{(\hat{V}_{p,i} > 0)} \partial_{\theta} \hat{V}_{p,i} \Delta_i$$

$$\mathsf{MVA} \approx \frac{1}{N_P} \sum_{p=1}^{N_P} \sum_{i=1}^{N_T} \mathsf{IM}(\partial_\theta \hat{V}_{p,i}, \partial_\theta Q(t)) \Delta_i$$

Overview

Outline

Future Greeks by AD in the LSMC Context 1

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$\mathsf{CVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} (\hat{V}_{\rho,i})^+ \Delta_i$$

• CVA Greeks computed by chain rule, involves parameter heta sensitivities

$$\partial_{\theta} \text{CVA} \approx \frac{1}{N_P} \sum_{p=1}^{N_P} \sum_{i=1}^{N_T} \mathbb{1}_{(\hat{V}_{p,i} > 0)} \partial_{\theta} \hat{V}_{p,i} \Delta_i$$

$$\mathsf{MVA} \approx \frac{1}{N_P} \sum_{\rho=1}^{N_P} \sum_{i=1}^{N_T} \mathsf{IM}(\partial_\theta \hat{V}_{\rho,i}, \partial_\theta Q(t)) \, \Delta_i$$

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow V_{p,i} \approx \phi(X_{i,p}) \cdot \beta$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

 $V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow V_{p,i} \approx \phi(X_{i,p}) \cdot \beta$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

 $\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$

$$\partial_{\theta}\hat{eta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

 $V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow V_{p,i} \approx \phi(X_{i,p}) \cdot \beta$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

 $\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow V_{p,i} \approx \phi(X_{i,p}) \cdot \beta$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow V_{p,i} \approx \phi(X_{i,p}) \cdot \beta$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{eta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

Can evaluate full chain in tangent or adjoint mode

• Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{p,i} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{eta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\boldsymbol{\theta}) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\boldsymbol{\theta})$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

LSMC Computational Graph

Breakdown of LSMC Dependencies

Outline

Overview

Figure: The LSMC computational graph with dependencies relevant for AD

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta)$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \partial_{\theta} \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

Can evaluate full chain in tangent or adjoint mode

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta, X_i) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta, X_i)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta, X_i) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta, X_i)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{eta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}, \boldsymbol{X}_i) = (\boldsymbol{\phi}(\boldsymbol{X}_i)' \boldsymbol{\phi}(\boldsymbol{X}_i))^{-1} \boldsymbol{\phi}(\boldsymbol{X}_i)' \hat{\boldsymbol{V}}_{i+1}(\boldsymbol{\theta}, \boldsymbol{X}_i)$$

$$\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\partial_{\theta}\hat{V}_{i+1}$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta, X_i) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta, X_i)$$

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{\mathbf{X}_i}\hat{\boldsymbol{\beta}} = \partial_{\mathbf{X}_i} \big((\phi(\mathbf{X}_i)'\phi(\mathbf{X}_i))^{-1} \phi(\mathbf{X}_i)' \hat{V}_{i+1} \big)$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\beta}(\theta, X_i) = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}(\theta, X_i)$$

$$\partial_{\mathbf{X}_i}\hat{\boldsymbol{\beta}} = \partial_{\mathbf{X}_i} \big((\phi(\mathbf{X}_i)'\phi(\mathbf{X}_i))^{-1} \phi(\mathbf{X}_i)'\hat{V}_{i+1} \big)$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\lim_{\mathsf{V}_{\rho}\to\infty}\hat{\beta}(\theta,X_i) = \lim_{\mathsf{N}_{\rho}\to\infty} (\phi(X_i)'\phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1}(\theta,X_i)$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{X_i}\hat{\beta} = \partial_{X_i}\big((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}\big)$$

Can evaluate full chain in tangent or adjoint mode

• Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

numerix

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\lim_{N_P \to \infty} \hat{\beta}(\theta, X_i) = \lim_{N_P \to \infty} (\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1}(\theta, X_i) = \beta_{\infty}$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{X_i} \hat{eta} = \partial_{X_i} ig((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} ig)$$

Can evaluate full chain in tangent or adjoint mode

• Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

numerix

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1})) | X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\lim_{N_{\rho}\to\infty}\hat{\beta}(\theta,X_{i}) = \lim_{N_{\rho}\to\infty} (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\hat{V}_{i+1}(\theta,X_{i}) = \beta_{\infty}$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\partial_{X_i}\hat{\beta} = \partial_{X_i}\big((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}\big)$$

Can evaluate full chain in tangent or adjoint mode

• Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

numerix

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}, \boldsymbol{X}_i) = (\phi(\boldsymbol{X}_i)'\phi(\boldsymbol{X}_i))^{-1}\phi(\boldsymbol{X}_i)'\hat{V}_{i+1}(\boldsymbol{\theta}, \boldsymbol{X}_i) = \beta_{\infty}$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\lim_{N_{P}\to\infty}\partial_{X_{i}}\hat{\beta} = \lim_{N_{P}\to\infty}\partial_{X_{i}}((\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\hat{V}_{i+1})$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}, \boldsymbol{X}_i) = (\phi(\boldsymbol{X}_i)'\phi(\boldsymbol{X}_i))^{-1}\phi(\boldsymbol{X}_i)'\hat{V}_{i+1}(\boldsymbol{\theta}, \boldsymbol{X}_i) = \beta_{\infty}$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\lim_{N_P \to \infty} \partial_{X_i} \hat{\beta} = \lim_{N_P \to \infty} \partial_{X_i} \left((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} \right) = 0$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed θ -dependence: $V(t_i, X_{p,i}, \theta) \approx \phi(X_{p,i}) \cdot \beta(\theta)$

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\theta}, \boldsymbol{X}_i) = (\phi(\boldsymbol{X}_i)'\phi(\boldsymbol{X}_i))^{-1}\phi(\boldsymbol{X}_i)'\hat{V}_{i+1}(\boldsymbol{\theta}, \boldsymbol{X}_i) = \beta_{\infty}$$

• AD: chain rule on recursion & intermediate sensitivities comp'd at run time

$$\lim_{N_P \to \infty} \partial_{X_i} \hat{\beta} = \lim_{N_P \to \infty} \partial_{X_i} \left((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} \right) = 0$$

Can evaluate full chain in tangent or adjoint mode

• LSMC for V_i : regress V_{i+1} onto N_B basis functions $\phi(X_{p,i})$

$$V_{i,p} = \mathbb{E}[V(t_{i+1}, X(t_{i+1}))|X_{p,i}] \longrightarrow \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

• Regression coefficients embed the heta dependence

$$\lim_{N_{p}\to\infty}\hat{\beta}_{i} = \lim_{N_{p}\to\infty} (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\hat{V}_{i+1} = \hat{\beta}_{\infty}$$

$$\lim_{N_P \to \infty} \partial_{X_i} \hat{\beta} \, \partial_{\theta} X_i = \lim_{N_P \to \infty} \partial_{X_i} \left((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} \right) \partial_{\theta} X_i = 0$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p,i}$ approximate $\partial_{\theta} V_{p,i}$ in practice?

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ \, dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

 $\partial_Q \mathsf{CVA} = \partial_\theta \mathsf{CVA} \left(\partial_\theta Q \right)^{-1}$

- heta is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_d}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$
• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} \mathbb{E}_{t} [C(t, T)] dt \right]$$

UMPCIX

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \mathbb{E}_{t} [\partial_{\theta} C(t, T)] dt \right]$$

UMPCIX

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{E}_{t} [\mathbb{1}_{(V(t)>0)} \partial_{\theta} C(t, T)] dt \right]$$

UMPCIX

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_Q \mathsf{CVA} = \partial_\theta \mathsf{CVA} \left(\partial_\theta Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \int_{0}^{T} \mathbb{E}_{0} [\mathbb{E}_{t} [\mathbb{1}_{(V(t)>0)} \partial_{\theta} C(t, T)]] dt$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_Q \mathsf{CVA} = \partial_\theta \mathsf{CVA} \left(\partial_\theta Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \int_0^T \mathbb{E}_0[\mathbb{1}_{(V(t)>0)} \partial_{\theta} \mathsf{C}(t, T)] dt$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T \mathbb{1}_{(V(t) > 0)} \partial_{\theta} C(t, T) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T \mathbf{1}_{(V(t)>0)} \partial_{\theta} \left(V(t) - \mathbf{1}_{(S(t^c)-V(t^c)>0)} (V(t) - S(t)) \right) dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- ullet heta is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} \left(V(t) - \mathbb{1}_{(S(t^{c})-V(t^{c})>0)} (V(t) - S(t)) \right) dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- ullet heta is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} (V(t) - \mathbb{1}_{(S(t^{c}) - V(t^{c})>0)} (V(t) - S(t))) dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

• Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- θ is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} (V(t) - \mathbb{1}_{(S(t^{c})-V(t^{c})>0)}(V(t) - S(t))) dt \right]$$

• CVA is value of credit risk in derivatives portfolio (or hedging cost)

Overview

$$\mathsf{CVA} = \mathbb{E}_0 \left[\int_0^T (V(t))^+ dt \right]$$

Outline

Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$\partial_{Q} \mathsf{CVA} = \partial_{\theta} \mathsf{CVA} \left(\partial_{\theta} Q \right)^{-1}$$

- heta is a parameter vector, possibly including initial states, X_0 , eg. FX spot
- HW-1F eg. has forward rate & vol knots, $\theta = [f_1, \dots, f_{N_F}, \sigma_1, \dots, \sigma_{N_\sigma}]$
- There is a formal requirement for $\partial_{\theta} V(t^{c_1}), \dots, V(t^{c_{N_c}})$ for callables¹

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} (V(t) - \mathbb{1}_{(S(t^{c})-V(t^{c})>0)}(V(t) - S(t))) dt \right]$$

• MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

Overview

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

 $\bullet\,$ MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^2

Overview

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

²See Green and Kenyon ('15) for detailed derivation

Outline

Motivation for IM

 $\bullet\,$ MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^2

Overview

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

²See Green and Kenyon ('15) for detailed derivation

Outline

Motivation for IM

Funding IM

Funding IM

Exotic: \$110M to Client

VM: \$110M from Bank

Figure: Exposure, variation margin and initial margin

Bank

 $\bullet\,$ MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^2

Overview

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

²See Green and Kenyon ('15) for detailed derivation

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

<u> </u>	<u> </u>	
Overview	U	

Outline

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

 $\bullet\,$ MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^2

Overview

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

²See Green and Kenyon ('15) for detailed derivation

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{M}_{\mathsf{Delta}} \approx \sqrt{\partial_{\mathcal{S}}' \mathcal{V} \Sigma \, \partial_{\mathcal{S}} \mathcal{V}}$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $S_1,
 u_1, \ldots$

$$\partial_{Q}V = \partial_{\theta}V\left(\partial_{\theta}Q\right)^{-1}$$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow \text{pseudo-inverse}$, $N_{\theta} > N_Q \rightarrow \text{bucketing}^2$
- The $N_{ heta} > N_Q$ case will enforced by model design and bucketing will be used³

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{IM}_{\mathsf{Delta}} pprox \sqrt{\partial_S' V \Sigma \, \partial_S V}$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $S_1,
 u_1, \ldots$

$$\partial_{Q} V = \partial_{\theta} V \left(\partial_{\theta} Q \right)^{-1}$$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow \text{pseudo-inverse}$, $N_{\theta} > N_Q \rightarrow \text{bucketing}^2$
- The $N_{ heta} > N_Q$ case will enforced by model design and bucketing will be used³

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over *eg*. swap rates & implied vols, $Q = [S_1, \ldots, S_{N_S}, \nu_1, \ldots, \nu_{N_\nu}]$

Outline

$$\mathsf{IM}_{\mathsf{Vega}}pprox \sqrt{\partial_
u'} \, V \, \Omega \, \partial_
u \, V$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $S_1,
 u_1, \ldots$

$$\partial_{Q}V = \partial_{\theta}V\left(\partial_{\theta}Q\right)^{-1}$$

- What if $N_{ heta}
 eq N_Q$? $N_{ heta} < N_Q \rightarrow$ pseudo-inverse, $N_{ heta} > N_Q \rightarrow$ bucketing²
- The $N_{ heta} > N_Q$ case will enforced by model design and bucketing will be used³

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{M}_{\mathsf{Delta}} \approx \sqrt{\partial_{\mathcal{S}}' \mathcal{V} \Sigma \, \partial_{\mathcal{S}} \mathcal{V}}$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $S_1,
 u_1, \ldots$

$$\partial_{Q}V = \partial_{\theta}V\left(\partial_{\theta}Q\right)^{-1}$$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow \text{pseudo-inverse}$, $N_{\theta} > N_Q \rightarrow \text{bucketing}^2$
- The $N_{ heta} > N_Q$ case will enforced by model design and bucketing will be used³

• ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{IM}_{\mathsf{Delta}} pprox \sqrt{\partial_{\mathcal{S}}' \mathcal{V} \, \Sigma \, \partial_{\mathcal{S}} \mathcal{V}}$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $\mathsf{S}_1, \nu_1, \ldots$

$$\partial_{\boldsymbol{Q}} \boldsymbol{V} = \partial_{\boldsymbol{\theta}} \boldsymbol{V} \left(\partial_{\boldsymbol{\theta}} \boldsymbol{Q} \right)^{-1}$$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow \text{pseudo-inverse}$, $N_{\theta} > N_Q \rightarrow \text{bucketing}^2$
- The $N_{ heta} > N_Q$ case will enforced by model design and bucketing will be used³

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{M}_{\mathsf{Delta}} \approx \sqrt{\partial_{\mathcal{S}}' \mathcal{V} \, \Sigma \, \partial_{\mathcal{S}} \mathcal{V}}$$

- Typical to use Jacobians to obtain Q-sensitivities from heta-sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over $S_1,
 u_1, \ldots$

$$\partial_{\boldsymbol{Q}} \boldsymbol{V} = \partial_{\boldsymbol{\theta}} \boldsymbol{V} \left(\partial_{\boldsymbol{\theta}} \boldsymbol{Q} \right)^{-1}$$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow$ pseudo-inverse, $N_{\theta} > N_Q \rightarrow$ bucketing²
- The $N_ heta > N_Q$ case will enforced by model design and bucketing will be used 3

MVA: Motivation and Logistics 2

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Overview

• Sensitivities over eg. swap rates & implied vols, $Q = [S_1, \dots, S_{N_S}, \nu_1, \dots, \nu_{N_\nu}]$

Outline

$$\mathsf{M}_{\mathsf{Delta}} pprox \sqrt{\partial_S' V \Sigma \, \partial_S V}$$

- Typical to use Jacobians to obtain Q-sensitivities from θ -sensitivities
- This just translates risk over f_1, σ_1, \ldots to risk over S_1, ν_1, \ldots

 $\partial_{Q(t)}V(t) = \partial_{\theta}V(t)\left(\partial_{\theta}Q(t)\right)^{-1}$

- What if $N_{\theta} \neq N_Q$? $N_{\theta} < N_Q \rightarrow \text{pseudo-inverse}$, $N_{\theta} > N_Q \rightarrow \text{bucketing}^2$
- The $N_ heta > N_Q$ case will enforced by model design and bucketing will be used 3

²Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ³Fries ('18) may have an alternative for this

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\hat{V}_{p,i}|X_i) = \mathbb{E}[(\hat{V}_{p,i} - V_{p,i})^2|X_i]$ $= \phi(X_{p,i})' \operatorname{var}(\hat{\beta}|X_i) \phi(X_{p,i}) + (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty})^2$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\hat{V}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\hat{V}_{p,i}|X_i) = \mathbb{E}[(\hat{V}_{p,i} - V_{p,i})^2|X_i]$ $= \phi(X_{p,i})' \operatorname{var}(\hat{\beta} | X_i) \phi(X_{p,i}) + (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty})^2$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\hat{\mathcal{V}}_{p,i} = \phi(X_{i,p}) \cdot \hat{\beta}$$

$$\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\hat{V}_{p,i}|X_i) = \mathbb{E}[((\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}) - (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}))^2 |X_i]$ $= \phi(X_{p,i})' \operatorname{var}(\hat{\beta} | X_i) \phi(X_{p,i}) + (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty})^2$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{aligned} \hat{V}_{p,i} &= \phi(X_{i,p}) \cdot \hat{\beta} \\ \hat{\beta} &= (\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} \end{aligned}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\hat{V}_{p,i}|X_i) = \mathbb{E}[((\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}) - (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}))^2 |X_i]$ $\approx \phi(X_{p,i})' \operatorname{var}(\hat{\beta} |X_i) \phi(X_{p,i}) + (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty})^2$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{aligned} \hat{V}_{p,i} &= \phi(X_{i,p}) \cdot \hat{\beta} \\ \hat{\beta} &= (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1} \end{aligned}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\hat{V}_{p,i}|X_i) = \mathbb{E}[((\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}) - (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty}))^2 |X_i]$ $= \phi(X_{p,i})' \operatorname{var}(\hat{\beta} |X_i) \phi(X_{p,i}) + (V_{p,i} - \phi(X_{p,i}) \cdot \beta_{\infty})^2$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{aligned} \partial_{\theta} \hat{V}_{p,i} &= \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta} \\ \partial_{\theta} \hat{\beta} &= (\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \partial_{\theta} \hat{V}_{i+1} \end{aligned}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{array}{lcl} \partial_{\theta} \hat{V}_{p,i} & = & \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta} \\ \\ \partial_{\theta} \hat{\beta} & = & (\phi(X_{i})' \phi(X_{i}))^{-1} \phi(X_{i})' \partial_{\theta} \hat{V}_{i+1} \end{array}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{array}{lcl} \partial_{\theta} \hat{V}_{p,i} & = & \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta} \\ \\ \partial_{\theta} \hat{\beta} & = & (\phi(X_{i})' \phi(X_{i}))^{-1} \phi(X_{i})' \partial_{\theta} \hat{V}_{i+1} \end{array}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{array}{lcl} \partial_{\theta} \hat{V}_{p,i} & = & \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta} \\ \\ \partial_{\theta} \hat{\beta} & = & (\phi(X_{i})' \phi(X_{i}))^{-1} \phi(X_{i})' \partial_{\theta} \hat{V}_{i+1} \end{array}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\begin{array}{lll} \partial_{\theta} \hat{V}_{p,i} &=& \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta} \\ \\ \partial_{\theta} \hat{\beta} &=& (\phi(X_{i})' \phi(X_{i}))^{-1} \phi(X_{i})' \partial_{\theta} \hat{V}_{i+1} \end{array}$$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\partial_{\theta} \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta}$$

 $\partial_{\theta}\hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\operatorname{var}(\partial_{\theta}\hat{V}_{i+1})\phi(X_i)(\phi(X_i)'\phi(X_i))^{-1}$

• Can establish MSE of LSMC error in $\hat{V}_{p,i}$ $MSE(\partial_{\theta}\hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta}\hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}) - (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty}))^{2}]$ $= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta}\hat{\beta})\phi(X_{p,i}) + (\partial_{\theta}V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta}\beta_{\infty})^{2}$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

Overview Outline Accuracy of Future Greeks from LSMC 1

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\partial_{\theta} \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta}$$

$$\partial_{\theta} \hat{\beta} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\operatorname{var}(\partial_{\theta} \hat{V}_{i+1})\phi(X_{i})(\phi(X_{i})'\phi(X_{i}))^{-1}$$
• Can establish MSE of LSMC error in $\hat{V}_{p,i}$

$$MSE(\partial_{\theta} \hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta} \hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}) - (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}))]$$

$$= \phi(X_{p,i})'\operatorname{var}(\partial_{\theta} \hat{\beta})\phi(X_{p,i}) + (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty})^{2}$$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

Overview Outline Accuracy of Future Greeks from LSMC 1

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\partial_{\theta} \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta}$$

$$\partial_{\theta} \hat{\beta} = (\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\operatorname{var}(\partial_{\sigma} \hat{V}_{i+1})\phi(X_i)(\phi(X_i)'\phi(X_i))^{-1}$$
• Can establish MSE of LSMC error in $\hat{V}_{p,i}$

$$MSE(\partial_{\theta} \hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta} \hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}) - (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}))]$$

$$= \phi(X_{p,i})'\operatorname{var}(\partial_{\theta} \hat{\beta})\phi(X_{p,i}) + (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty})^{2}$$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

Overview Outline Accuracy of Future Greeks from LSMC 1

• Our \hat{V}_i come from regressing \hat{V}_{i+1} onto N_B basis functions $\phi(X_i)$

$$\partial_{\theta} \hat{V}_{p,i} = \phi(X_{i,p}) \cdot \partial_{\theta} \hat{\beta}$$

$$\partial_{\theta} \hat{\beta} = (\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \operatorname{var}(\cdots dW(t)) \phi(X_i) (\phi(X_i)' \phi(X_i))^{-1}$$
• Can establish MSE of LSMC error in $\hat{V}_{p,i}$

$$MSE(\partial_{\theta} \hat{V}_{p,i}) = \mathbb{E}[((\partial_{\theta} \hat{V}_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}) - (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty}))^{2}]$$

$$= \phi(X_{p,i})' \operatorname{var}(\partial_{\theta} \hat{\beta}) \phi(X_{p,i}) + (\partial_{\theta} V_{p,i} - \phi(X_{p,i}) \cdot \partial_{\theta} \beta_{\infty})^{2}$$

• Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?

Overview

Outline

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Values vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

Overview (

Outline

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Deltas vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

Overview

Outline

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Vegas vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,i}, \theta) w(X_{p,i}, \theta) + \cdots$

3 Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}$$

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ

 $V(X_{p,i},\theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i},\theta) + \beta_2 V^{euro}(X_{p,i},\theta) w(X_{p,i},\theta) + \cdots$

Solution V_{i+1} Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}$$

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,i}, \theta) w(X_{p,i}, \theta) + \cdots$
- **Output** Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}$$

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,i}, \theta) w(X_{p,i}, \theta) + \cdots$
- **Output** Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} - v_{p,i} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}$$

• Assess impact of using \hat{V}_{i+1} vs. C_{i+1,N_T} as regressands: bias vs. variance

• As for LSMC exposures, need engineering & validation in complex cases

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,i}, \theta) w(X_{p,i}, \theta) + \cdots$
- **Output** Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} - v_{p,i} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}^{v}$$

3 Assess impact of using \hat{V}_{i+1} vs. C_{i+1,N_T} as regressands: bias vs. variance

• As for LSMC exposures, need engineering & validation in complex cases

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,i}, \theta) w(X_{p,i}, \theta) + \cdots$
- **Output** Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} - V_{p,i+1}^{euro} - V_{p,i}^{euro} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}^{\upsilon}$$

- Many engineering techniques available to improve LSMC accuracy
- Craft basis on a trade-by-trade basis and incorporate functions of θ $V(X_{p,i}, \theta) \approx \beta_0 + \beta_1 V^{euro}(X_{p,i}, \theta) + \beta_2 V^{euro}(X_{p,j}, \theta) w(X_{p,i}, \theta) + \cdots$

3 Use control variates to reduce variance in V_{i+1}

$$\hat{V}_{p,i+1} = \phi(X_{p,i}) \cdot \beta + \epsilon_{p,i}$$

• Assess impact of using \hat{V}_{i+1} vs. C_{i+1,N_T} as regressands: bias vs. variance

• As for LSMC exposures, need engineering & validation in complex cases

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative

• Can regress $\partial_{\theta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{\theta_n}(X_i,\theta)$

$$\partial_{\theta_n} V_{p,i} = \mathbb{E} \big[\partial_{\theta_n} C_{i+1} | X_{p,i} \big] \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not $V_i \& \partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_n}$ computing N_{θ} times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative

• Can regress $\partial_{ heta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{ heta_n}(X_i, heta)$

$$\frac{\partial_{\theta_n} V_{p,i}}{\partial_{\theta_n} C_{i+1} | X_{p,i}} \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not $V_i \& \partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_n}$ computing N_{θ} times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{\theta_n}(X_i, \theta)$

$$\frac{\partial_{\theta_n} V_{p,i}}{\partial_{\theta_n} C_{i+1} | X_{p,i}} \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not V_i & $\partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated $N_{ heta}$ times is cheaper than $\hat{\gamma}_{ heta_n}$ computing $N_{ heta}$ times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative

• Can regress $\partial_{\theta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{\theta_n}(X_i,\theta)$

$$\partial_{\theta_n} V_{p,i} = \mathbb{E} \big[\partial_{\theta_n} C_{i+1} | X_{p,i} \big] \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not V_i & $\partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_n}$ computing N_{θ} times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta
- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative

• Can regress $\partial_{\theta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{\theta_n}(X_i,\theta)$

$$\partial_{\theta_n} V_{p,i} = \mathbb{E} \big[\partial_{\theta_n} C_{i+1} | X_{p,i} \big] \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not $V_i \& \partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated $N_{ heta}$ times is cheaper than $\hat{\gamma}_{ heta_n}$ computing $N_{ heta}$ times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative

• Can regress $\partial_{\theta_n} C_{i+1,N_T}$ directly onto dedicated basis, $\phi_{\theta_n}(X_i, \theta)$

$$\frac{\partial_{\theta_n} V_{p,i}}{\partial_{\theta_n} C_{i+1} | X_{p,i}} \longrightarrow \partial_{\theta_n} \hat{V}_{p,i} = \phi_{\theta_n} (X_i, \theta) \cdot \hat{\gamma}_{\theta_n}$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_n} V_i$, not $V_i \& \partial_{\theta} V_i$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_n}$ computing N_{θ} times
- Can mix-&-match, using AD-on-LSMC for all but difficult members of heta

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

ullet Dependence upon θ gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\lim_{N_{\rho}\to\infty}\partial_{X_{i}}\hat{\beta}\,\partial_{\theta}X_{i} = \lim_{N_{\rho}\to\infty}\partial_{X_{i}}\big((\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\hat{V}_{i+1}\big)\,\partial_{\theta}X_{i} = 0$$

- Propagating through $\partial_{X_i}\hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, *eg*. in small samples

ullet Dependence upon θ gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\lim_{N_{P}\to\infty}\partial_{X_{i}}\hat{\beta}\,\partial_{\theta}X_{i} = \lim_{N_{P}\to\infty}\partial_{X_{i}}\big((\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\hat{V}_{i+1}\big)\,\partial_{\theta}X_{i} = 0$$

- Propagating through $\partial_{X_i}\hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, *eg*. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\partial_{X_i} \hat{eta} \, \partial_{\theta} X_i = \partial_{X_i} ig((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} ig) \, \partial_{\theta} X_i = 0$$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_{ heta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\partial_{X_i}\hat{eta}\,\partial_{ heta}X_i=\partial_{X_i}ig((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}ig)\,\partial_{ heta}X_i=0$$

- Propagating through $\partial_{X_i}\hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

 $\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$

• Large-sample: ignore X_i-dependence in \hat{eta} , & thus heta-dependence in X_i

 $\partial_{X_i}\hat{\beta}\,\partial_{\theta}X_i = \partial_{X_i}\big((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}\big)\,\partial_{\theta}X_i = 0$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_{ heta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon θ gets propagated through the regression matrix

 $\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$

• Large-sample: ignore X_i -dependence in $\hat{\beta}$, & thus heta-dependence in X_i

 $\partial_{X_i}\hat{\beta}\,\partial_{\theta}X_i = \partial_{X_i}\big((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}\big)\,\partial_{\theta}X_i = 0$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_ heta\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon θ gets propagated through the regression matrix

 $\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$

• Large-sample: ignore X_i-dependence in \hat{eta} , & thus heta-dependence in X_i

 $\partial_{X_i}\hat{\beta}\,\partial_{\theta}X_i = \partial_{X_i}\big((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}\big)\,\partial_{\theta}X_i = 0$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_ heta\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\partial_{X_i}\hat{eta}\,\partial_{ heta}X_i=\partial_{X_i}ig((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}ig)\,\partial_{ heta}X_i=0$$

- Propagating through $\partial_{X_i}\hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\partial_{X_i} \hat{eta} \, \partial_{\theta} X_i = \partial_{X_i} ig((\phi(X_i)' \phi(X_i))^{-1} \phi(X_i)' \hat{V}_{i+1} ig) \, \partial_{\theta} X_i = 0$$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_{ heta}\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{\beta} = \partial_{X_i}(\beta_{\infty} (\hat{\beta} \beta_{\infty})) = \partial_{X_i}(\hat{\beta} \beta_{\infty})) = \partial_{X_i}\epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

ullet Dependence upon heta gets propagated through the regression matrix

$$\partial_{\theta}\hat{\beta}_{i} = (\phi(X_{i})'\phi(X_{i}))^{-1}\phi(X_{i})'\partial_{\theta}\hat{V}_{i+1}$$

$$\partial_{X_i}\hat{eta}\,\partial_{ heta}X_i = \partial_{X_i}ig((\phi(X_i)'\phi(X_i))^{-1}\phi(X_i)'\hat{V}_{i+1}ig)\,\partial_{ heta}X_i = 0$$

- Propagating through $\partial_{X_i}\hat{eta}$ is as expensive as the main propagation of $\partial_ heta\hat{V}_{i+1}$
- Differentiating noise, $\partial_{X_i}\hat{eta} = \partial_{X_i}(eta_\infty (\hat{eta} eta_\infty)) = \partial_{X_i}(\hat{eta} eta_\infty)) = \partial_{X_i}\epsilon_{\hat{eta}}$
- Still important in presence of outliers/overfit, eg. in small samples

AD-on-LSMC Accuracy: Large-Sample Propagation

Figure: AD-on-LSMC Vegas with no $\partial_{X_i}\hat{eta}$ propagation *vs*. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC Accuracy: Large-Sample Propagation

Figure: AD-on-LSMC Deltas with no $\partial_{X_i}\hat{eta}$ propagation *vs*. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC: Propagation Mode

• AD evaluates chain rule in either tangent (forward) or adjoint (reverse) modes

• Tangent costs (\approx) $\mathcal{O}(N_{ins})$ while adjoint costs (\approx) $\mathcal{O}(N_{outs})$

 $\mathsf{CVA}: N_{ins} = N_{\theta} \& N_{outs} = 1 \implies \mathsf{adjoint}$

$$\mathsf{MVA}: \ \mathsf{N}_{ins} = \mathsf{N}_{\theta} \ \& \ \mathsf{N}_{outs} = \mathsf{N}_{T} \cdot \mathsf{N}_{P} \implies \mathsf{tangent}$$

• MVA is not a Greek: Greeks over all exposures, $\partial_{\theta} \hat{V}_{p,i}$, are inputs

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt \right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t) > 0)} \partial_{\theta} V(t) \, dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt\right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \partial_{\theta} V(t, X(t, \theta), \theta) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt \right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt\right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt\right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt\right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t, X(t, \theta), \theta)) \, dt\right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_\theta V(t, X(t, \theta), \theta)|_{X(t)}) \, dt \right]$$

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$\partial_{\theta} \mathsf{CVA} = \mathbb{E}_{0} \left[\int_{0}^{T} \mathbb{1}_{(V(t)>0)} \left(\partial_{\theta} V(t) + \partial_{X(t)} V(t) \cdot \partial_{\theta} X(t) \right) dt \right]$$

$$\mathsf{MVA} = \mathbb{E}_0\left[\int_0^T \mathsf{IM}(\partial_\theta V(t)) \, dt\right]$$

MVA: Motivation and Logistics 1 (Appendix)

Overview

• MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR⁴

$$\mathsf{MVA} = \mathbb{E}_0 \left[\int_0^T \mathsf{IM}(\partial_{Q(t)} V(t)) \, dt \right]$$

Outline

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both c/parties post to 3^{rd} -party custodians \implies needs funding
- In practice, portfolio hedges attract bilateral &/or clearing-house IM too
- MVA reflects funding costs in valuations \implies spectre of FVA debate

⁴See Green and Kenyon ('15) for detailed derivation

Overview O	ι
------------	---

Outline

Swap IM Projections

numerix

Figure: Delta-IM for a vanilla swap: just applying SIMM rule, not CCH rule

Swaption IM Projections

Figure: Delta-IM for a swaption

Overview Or

Outline

Bermudan IM Projections

Figure: Delta-IM for a Bermudan

