AD-on-LSMC for MVA and CVA Greeks: Simplifications and Efficiencies

Andrew McClelland and Serguei Issakov Quantitative Research, Numerix

Alexander Antonov
Quantitative Research, Standard Chartered

QuantMinds International, Lisbon

May 17, 2018
numerix

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)}(V(t))^{+} \lambda(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\partial_{\theta} \mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \partial_{\theta}(V(t))^{+} d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \mathrm{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} e^{-R(t)} \operatorname{IM}(t) s(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \mathrm{IM}(t) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(V_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(V_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(V_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(\hat{V}_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(\hat{V}_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(\hat{V}_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t), \partial_{\theta} Q(t)\right) d t\right]
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(\hat{V}_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}} 1_{\left(\hat{V}_{p, i}>0\right)} \partial_{\theta} \hat{V}_{p, i} \Delta_{i}
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\operatorname{MVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}} \operatorname{IM}\left(\partial_{\theta} \hat{V}_{p, i}, \partial_{\theta} Q(t)\right) \Delta_{i}
$$

Future Greeks by AD in the LSMC Context 1

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}}\left(\hat{V}_{p, i}\right)^{+} \Delta_{i}
$$

- CVA Greeks computed by chain rule, involves parameter θ sensitivities

$$
\partial_{\theta} \mathrm{CVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}} 1_{\left(\hat{V}_{p, i}>0\right)} \partial_{\theta} \hat{V}_{p, i} \Delta_{i}
$$

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA} \approx \frac{1}{N_{P}} \sum_{p=1}^{N_{P}} \sum_{i=1}^{N_{T}} \operatorname{IM}\left(\partial_{\theta} \hat{V}_{p, i}, \partial_{\theta} Q(t)\right) \Delta_{i}
$$

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow V_{p, i} \approx \phi\left(X_{i, p}\right) \cdot \beta
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow V_{p, i} \approx \phi\left(X_{i, p}\right) \cdot \beta
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow V_{p, i} \approx \phi\left(X_{i, p}\right) \cdot \beta
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow V_{p, i} \approx \phi\left(X_{i, p}\right) \cdot \beta
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow V_{p, i} \approx \phi\left(X_{i, p}\right) \cdot \beta
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{p, i}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}(\theta)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}(\theta)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

LSMC Computational Graph

Breakdown of LSMC Dependencies

Figure: The LSMC computational graph with dependencies relevant for AD

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}(\theta)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}(\theta)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}(\theta)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}(\theta)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}(\theta)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}(\theta)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \partial_{\theta} \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Future Greeks by AD in the LSMC Context 2

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}(\theta)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}(\theta)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{\theta} \hat{\beta}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\lim _{N_{P} \rightarrow \infty} \hat{\beta}\left(\theta, X_{i}\right)=\lim _{N_{P} \rightarrow \infty}\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\lim _{N_{P} \rightarrow \infty} \hat{\beta}\left(\theta, X_{i}\right)=\lim _{N_{P} \rightarrow \infty}\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)=\beta_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\lim _{N_{P} \rightarrow \infty} \hat{\beta}\left(\theta, X_{i}\right)=\lim _{N_{P} \rightarrow \infty}\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)=\beta_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)=\beta_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)=\beta_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)=0
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed θ-dependence: $V\left(t_{i}, X_{p, i}, \theta\right) \approx \phi\left(X_{p, i}\right) \cdot \beta(\theta)$

$$
\hat{\beta}\left(\theta, X_{i}\right)=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\left(\theta, X_{i}\right)=\beta_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right)=0
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Coefficient Behavior and Dependencies in Large Samples

- LSMC for V_{i} : regress V_{i+1} onto N_{B} basis functions $\phi\left(X_{p, i}\right)$

$$
V_{i, p}=\mathbb{E}\left[V\left(t_{i+1}, X\left(t_{i+1}\right)\right) \mid X_{p, i}\right] \longrightarrow \hat{V}_{p, i}=\phi\left(X_{i, p}\right) \cdot \hat{\beta}
$$

- Regression coefficients embed the θ dependence

$$
\lim _{N_{P} \rightarrow \infty} \hat{\beta}_{i}=\lim _{N_{P} \rightarrow \infty}\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}=\hat{\beta}_{\infty}
$$

- AD: chain rule on recursion \& intermediate sensitivities comp'd at run time

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Can evaluate full chain in tangent or adjoint mode
- Good in theory, but how well does $\partial_{\theta} \hat{V}_{p, i}$ approximate $\partial_{\theta} V_{p, i}$ in practice?

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^0]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^1]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^2]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^3]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^4]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^5]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} \mathbb{E}_{t}[C(t, T)] d t\right]
$$

[^6]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \mathbb{E}_{t}\left[\partial_{\theta} C(t, T)\right] d t\right]
$$

[^7]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \mathbb{E}_{t}\left[1_{(V(t)>0)} \partial_{\theta} C(t, T)\right] d t\right]
$$

[^8]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\int_{0}^{T} \mathbb{E}_{0}\left[\mathbb{E}_{t}\left[1_{(V(t)>0)} \partial_{\theta} C(t, T)\right]\right] d t
$$

[^9]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\int_{0}^{T} \mathbb{E}_{0}\left[1_{(V(t)>0)} \partial_{\theta} C(t, T)\right] d t
$$

[^10]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} C(t, T) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

[^11]
CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta}\left(V(t)-1_{\left(S\left(t^{c}\right)-V\left(t^{c}\right)>0\right)}(V(t)-S(t))\right) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta}\left(V(t)-1_{\left(S\left(t^{c}\right)-V\left(t^{c}\right)>0\right)}(V(t)-S(t))\right) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta}\left(V(t)-1_{\left(S\left(t^{c}\right)-V\left(t^{c}\right)>0\right)}(V(t)-S(t))\right) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V(t)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta}\left(V(t)-1_{\left(S\left(t^{c}\right)-V\left(t^{c}\right)>0\right)}(V(t)-S(t))\right) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

CVA Greeks: Usage and Calculation

- CVA is value of credit risk in derivatives portfolio (or hedging cost)

$$
\mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T}(V(t))^{+} d t\right]
$$

- Greeks against quotes, Q, eg. swap rates or vols, computed via Jacobians

$$
\partial_{Q} \mathrm{CVA}=\partial_{\theta} \mathrm{CVA}\left(\partial_{\theta} Q\right)^{-1}
$$

- θ is a parameter vector, possibly including initial states, X_{0}, eg. FX spot
- HW-1F eg. has forward rate \& vol knots, $\theta=\left[f_{1}, \ldots, f_{N_{F}}, \sigma_{1}, \ldots, \sigma_{N_{\sigma}}\right]$
- There is a formal requirement for $\partial_{\theta} V\left(t^{c_{1}}\right), \ldots, V\left(t^{c_{N_{C}}}\right)$ for callables ${ }^{1}$

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta}\left(V(t)-1_{\left(S\left(t^{c}\right)-V\left(t^{c}\right)>0\right)}(V(t)-S(t))\right) d t\right]
$$

${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

MVA: Motivation and Logistics 1

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR ($\sim 10 \mathrm{D}$)
- Bilateral IM: both $c /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

MVA: Motivation and Logistics 1

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^{2}

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR (\sim 10D)
- Bilateral IM: both $c /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

Motivation for IM

Figure: Exposure, variation margin and initial margin

Motivation for IM

Figure: Event sequence during the margin period of risk: a la Andersen et al. ('17)

MVA: Motivation and Logistics 1

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^{2}

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR ($\sim 10 \mathrm{D}$)
- Bilateral IM: both $\mathrm{c} /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

Motivation for IM

Figure: Exposure, variation margin and initial margin

Funding IM

Figure: Exposure, variation margin and initial margin

Funding IM

Figure: Exposure, variation margin and initial margin

Funding IM

Figure: Exposure, variation margin and initial margin

Funding IM

Figure: Exposure, variation margin and initial margin

MVA: Motivation and Logistics 1

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^{2}

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR ($\sim 10 \mathrm{D}$)
- Bilateral IM: both $c /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

Full Trade Impact on IM Requirements

Figure: IM due to client trade and hedge trade/s

MVA: Motivation and Logistics 1

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR^{2}

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR ($\sim 10 \mathrm{D}$)
- Bilateral IM: both $\mathrm{c} /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{S}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^12]
MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{s}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^13]
MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{S}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{IM}_{\mathrm{Vega}} \approx \sqrt{\partial_{\nu}^{\prime} V \Omega \partial_{\nu} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^14]
MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{S}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^15]
MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{S}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^16]
MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{s}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q} V=\partial_{\theta} V\left(\partial_{\theta} Q\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^17]
Bucketing

Model Yield Knot Tenors

Risk Factor Tenors

10Y

Figure: Bucketing to ensure invertible Jacocbians

Bucketing

Model Yield Knot Tenors

$10 Y$

Figure: Bucketing to ensure invertible Jacocbians

MVA: Motivation and Logistics 2

- ISDA proposed a sensitivity-based approximation to $99 \%-10 \mathrm{D}$ VaR for IM
- Sensitivities over eg. swap rates \& implied vols, $Q=\left[S_{1}, \ldots, S_{N_{s}}, \nu_{1}, \ldots, \nu_{N_{\nu}}\right]$

$$
\mathrm{I}_{\text {Delta }} \approx \sqrt{\partial_{S}^{\prime} V \Sigma \partial_{S} V}
$$

- Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities
- This just translates risk over $f_{1}, \sigma_{1}, \ldots$ to risk over S_{1}, ν_{1}, \ldots

$$
\partial_{Q(t)} V(t)=\partial_{\theta} V(t)\left(\partial_{\theta} Q(t)\right)^{-1}
$$

- What if $N_{\theta} \neq N_{Q}$? $N_{\theta}<N_{Q} \rightarrow$ pseudo-inverse, $N_{\theta}>N_{Q} \rightarrow$ bucketing 2
- The $N_{\theta}>N_{Q}$ case will enforced by model design and bucketing will be used ${ }^{3}$

[^18]
Bucketing

Model Yield Knot Tenors: Start

Model Yield Knot Tenors: After 1Y

Risk Factor Tenors: All Dates

Figure: Bucketing to ensure invertible future Jacocbians

Bucketing

Model Yield Knot Tenors: Start

Risk Factor Tenors: All Dates

Figure: Bucketing to ensure invertible future Jacocbians

Bucketing

Model Yield Knot Tenors: Start

Risk Factor Tenors: All Dates

Figure: Bucketing to ensure invertible future Jacocbians

Bucketing

Risk Factor Tenors: All Dates

Figure: Bucketing to ensure invertible future Jacocbians

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \hat{\beta} \\
\hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{V}_{p, i} \mid X_{i}\right) & =\mathbb{E}\left[\left(\hat{V}_{p, i}-V_{p, i}\right)^{2} \mid X_{i}\right] \\
& =\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\hat{\beta} \mid X_{i}\right) \phi\left(X_{p, i}\right)+\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)^{2}
\end{aligned}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \hat{\beta} \\
\hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{V}_{p, i} \mid X_{i}\right) & =\mathbb{E}\left[\left(\hat{V}_{p, i}-V_{p, i}\right)^{2} \mid X_{i}\right] \\
& =\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\hat{\beta} \mid X_{i}\right) \phi\left(X_{p, i}\right)+\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)^{2}
\end{aligned}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \hat{\beta} \\
\hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{V}_{p, i} \mid X_{i}\right) & =\mathbb{E}\left[\left(\left(\hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)-\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)\right)^{2} \mid X_{i}\right] \\
& =\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\hat{\beta} \mid X_{i}\right) \phi\left(X_{p, i}\right)+\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)^{2}
\end{aligned}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \hat{\beta} \\
\hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{V}_{p, i} \mid X_{i}\right) & =\mathbb{E}\left[\left(\left(\hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)-\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)\right)^{2} \mid X_{i}\right] \\
& \approx \phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\hat{\beta} \mid X_{i}\right) \phi\left(X_{p, i}\right)+\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)^{2}
\end{aligned}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \hat{\beta} \\
\hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{V}_{p, i} \mid X_{i}\right) & =\mathbb{E}\left[\left(\left(\hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)-\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)\right)^{2} \mid X_{i}\right] \\
& =\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\hat{\beta} \mid X_{i}\right) \phi\left(X_{p, i}\right)+\left(V_{p, i}-\phi\left(X_{p, i}\right) \cdot \beta_{\infty}\right)^{2}
\end{aligned}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{V}_{i+1}\right) \phi\left(X_{i}\right)\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{V}_{i+1}\right) \phi\left(X_{i}\right)\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \operatorname{var}\left(\partial_{\sigma} \hat{V}_{i+1}\right) \phi\left(X_{i}\right)\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

Accuracy of Future Greeks from LSMC 1

- Our \hat{V}_{i} come from regressing \hat{V}_{i+1} onto N_{B} basis functions $\phi\left(X_{i}\right)$

$$
\begin{aligned}
\partial_{\theta} \hat{V}_{p, i} & =\phi\left(X_{i, p}\right) \cdot \partial_{\theta} \hat{\beta} \\
\partial_{\theta} \hat{\beta} & =\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \operatorname{var}(\cdots d W(t)) \phi\left(X_{i}\right)\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1}
\end{aligned}
$$

- Can establish MSE of LSMC error in $\hat{V}_{p, i}$
$\operatorname{MSE}\left(\partial_{\theta} \hat{V}_{p, i}\right)=\mathbb{E}\left[\left(\left(\partial_{\theta} \hat{V}_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)-\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)\right)^{2}\right]$

$$
=\phi\left(X_{p, i}\right)^{\prime} \operatorname{var}\left(\partial_{\theta} \hat{\beta}\right) \phi\left(X_{p, i}\right)+\left(\partial_{\theta} V_{p, i}-\phi\left(X_{p, i}\right) \cdot \partial_{\theta} \beta_{\infty}\right)^{2}
$$

- Is the basis good for $\partial_{\theta} \hat{V}_{i+1}$? How does the bias react? Need more flexibility?
- What about the variance of $\partial_{\theta} \hat{V}_{i+1}$? Need larger N_{P} ?

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Values vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Deltas vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC Accuracy

Figure: AD-on-LSMC Vegas vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}-v_{p, i}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}-v_{p, i}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}^{v}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}-V_{p, i+1}^{\text {euro }}-V_{p, i}^{\text {euro }}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}^{v}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Accuracy of Future Greeks from LSMC 2

- Many engineering techniques available to improve LSMC accuracy
(1) Craft basis on a trade-by-trade basis and incorporate functions of θ

$$
V\left(X_{p, i}, \theta\right) \approx \beta_{0}+\beta_{1} V^{\text {euro }}\left(X_{p, i}, \theta\right)+\beta_{2} V^{\text {euro }}\left(X_{p, i}, \theta\right) w\left(X_{p, i}, \theta\right)+\cdots
$$

(2) Use control variates to reduce variance in V_{i+1}

$$
\hat{V}_{p, i+1}=\phi\left(X_{p, i}\right) \cdot \beta+\epsilon_{p, i}
$$

(3) Assess impact of using \hat{V}_{i+1} vs. $C_{i+1, N_{T}}$ as regressands: bias vs. variance

- As for LSMC exposures, need engineering \& validation in complex cases

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Alternative to AD-on-LSMC: Direct Greek Regression

- High-dimensional models, path-dependent products, complex payoffs etc.
- Can expect performance of LSMC Greeks to suffer, need alternative
- Can regress $\partial_{\theta_{n}} C_{i+1, N_{T}}$ directly onto dedicated basis, $\phi_{\theta_{n}}\left(X_{i}, \theta\right)$

$$
\partial_{\theta_{n}} V_{p, i}=\mathbb{E}\left[\partial_{\theta_{n}} C_{i+1} \mid X_{p, i}\right] \longrightarrow \partial_{\theta_{n}} \hat{V}_{p, i}=\phi_{\theta_{n}}\left(X_{i}, \theta\right) \cdot \hat{\gamma}_{\theta_{n}}
$$

- Main benefit is that basis only has to tailor to $\partial_{\theta_{n}} V_{i}$, not $V_{i} \& \partial_{\theta} V_{i}$
- Expensive: $\hat{\beta}$ differentiated N_{θ} times is cheaper than $\hat{\gamma}_{\theta_{n}}$ computing N_{θ} times
- Can mix-\&-match, using AD-on-LSMC for all but difficult members of θ

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Presentation Outline

- CVA Greeks and MVA via "Future" Greeks
- Future Greeks as a by-product of AD-on-LSMC
- AD efficiencies for LSMC: large-sample regression coefficient dependencies

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\lim _{N_{P} \rightarrow \infty} \partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

Coefficient Behavior and Dependencies in Large Samples

- Dependence upon θ gets propagated through the regression matrix

$$
\partial_{\theta} \hat{\beta}_{i}=\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \partial_{\theta} \hat{V}_{i+1}
$$

- Large-sample: ignore X_{i}-dependence in $\hat{\beta}$, \& thus θ-dependence in X_{i}

$$
\partial_{X_{i}} \hat{\beta} \partial_{\theta} X_{i}=\partial_{X_{i}}\left(\left(\phi\left(X_{i}\right)^{\prime} \phi\left(X_{i}\right)\right)^{-1} \phi\left(X_{i}\right)^{\prime} \hat{V}_{i+1}\right) \partial_{\theta} X_{i}=0
$$

- Propagating through $\partial_{X_{i}} \hat{\beta}$ is as expensive as the main propagation of $\partial_{\theta} \hat{V}_{i+1}$
- Differentiating noise, $\left.\partial_{X_{i}} \hat{\beta}=\partial_{X_{i}}\left(\beta_{\infty}-\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}}\left(\hat{\beta}-\beta_{\infty}\right)\right)=\partial_{X_{i}} \epsilon_{\hat{\beta}}$
- Still important in presence of outliers/overfit, eg. in small samples

AD-on-LSMC Accuracy: Large-Sample Propagation

Figure: AD-on-LSMC Vegas with no $\partial_{X_{i}} \hat{\beta}$ propagation vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC Accuracy: Large-Sample Propagation

Figure: AD-on-LSMC Deltas with no $\partial_{X_{i}} \hat{\beta}$ propagation vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

AD-on-LSMC: Propagation Mode

- AD evaluates chain rule in either tangent (forward) or adjoint (reverse) modes
- Tangent costs $(\approx) \mathcal{O}\left(N_{\text {ins }}\right)$ while adjoint costs $(\approx) \mathcal{O}\left(N_{\text {outs }}\right)$

CVA : $N_{\text {ins }}=N_{\theta} \& N_{\text {outs }}=1 \Longrightarrow$ adjoint
MVA: $N_{\text {ins }}=N_{\theta} \& N_{\text {outs }}=N_{T} \cdot N_{P} \Longrightarrow$ tangent

- MVA is not a Greek: Greeks over all exposures, $\partial_{\theta} \hat{V}_{p, i}$, are inputs

Future Greeks for CVA Greeks and MVA (Appendix)

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)} \partial_{\theta} V(t, X(t, \theta), \theta) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t, X(t, \theta), \theta)\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\left.\partial_{\theta} V(t, X(t, \theta), \theta)\right|_{X(t)}\right) d t\right]
$$

Future Greeks for CVA Greeks and MVA

- Mild difference between future Greeks for CVA, and future Greeks for MVA
- Future Greeks for CVA include trajectory: requires additional propagation

$$
\partial_{\theta} \mathrm{CVA}=\mathbb{E}_{0}\left[\int_{0}^{T} 1_{(V(t)>0)}\left(\partial_{\theta} V(t)+\partial_{X(t)} V(t) \cdot \partial_{\theta} X(t)\right) d t\right]
$$

- Future Greeks for MVA are along a fixed trajectory: no additional propagation

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{\theta} V(t)\right) d t\right]
$$

MVA: Motivation and Logistics 1 (Appendix)

- MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR ${ }^{4}$

$$
\mathrm{MVA}=\mathbb{E}_{0}\left[\int_{0}^{T} \operatorname{IM}\left(\partial_{Q(t)} V(t)\right) d t\right]
$$

- IM is additional collateral to mitigate counterparty risk over MPoR ($\sim 10 \mathrm{D}$)
- Bilateral IM: both $\mathrm{c} /$ parties post to $3^{\text {rd }}$-party custodians \Longrightarrow needs funding
- In practice, portfolio hedges attract bilateral \&/or clearing-house IM too
- MVA reflects funding costs in valuations \Longrightarrow spectre of FVA debate

Swap IM Projections

Figure: Delta-IM for a vanilla swap: just applying SIMM rule, not CCH rule

Swaption IM Projections

Figure: Delta-IM for a swaption
A. McClelland with A. Antonov and S. Issakov

Bermudan IM Projections

Figure: Delta-IM for a Bermudan

[^0]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^1]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^2]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^3]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^4]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^5]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^6]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^7]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^8]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^9]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^10]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^11]: ${ }^{1}$ Conditioning: Andreasen (14), Indicators: Antonov et al ('16) \& Capriotti et al ('16)

[^12]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^13]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^14]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^15]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^16]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^17]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

[^18]: ${ }^{2}$ Could also use sophisticated shape-weighted bucketing, risk curves, etc.
 ${ }^{3}$ Fries ('18) may have an alternative for this

