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Overview Outline

Future Greeks for CVA Greeks and MVA

CVA is value of credit risk in derivatives portfolio (or hedging cost)

CVA = E0

[∫ T

0

e−R(t)(V (t))+ λ(t) dt

]
CVA Greeks computed by chain rule, involves parameter θ sensitivities

∂θCVA = ∂θ E0

[∫ T

0

e−R(t)(V (t))+ λ(t) dt

]
MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

MVA = E0

[∫ T

0

e−R(t)IM(t) s(t) dt

]
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Overview Outline

Future Greeks by AD in the LSMC Context 2

LSMC for Vi : regress Vi+1 onto NB basis functions φ(Xp,i )

Vp,i = E[V (ti+1,X (ti+1))|Xp,i ] −→ Vp,i ≈ φ(Xi,p) · β

Regression coe�cients embed θ-dependence: V (ti ,Xp,i , θ) ≈ φ(Xp,i ) · β(θ)

β̂ = (φ(Xi )
′φ(Xi ))−1φ(Xi )

′V̂i+1

AD: chain rule on recursion & intermediate sensitivities comp'd at run time

∂θβ̂ = (φ(Xi )
′φ(Xi ))−1φ(Xi )

′∂θV̂i+1

Can evaluate full chain in tangent or adjoint mode

Good in theory, but how well does ∂θV̂p,i approximate ∂θVp,i in practice?
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Figure: The LSMC computational graph with dependencies relevant for AD
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Overview Outline

CVA Greeks: Usage and Calculation

CVA is value of credit risk in derivatives portfolio (or hedging cost)

CVA = E0

[∫ T

0

(V (t))+ dt

]
Greeks against quotes, Q, eg . swap rates or vols, computed via Jacobians

∂QCVA = ∂θCVA (∂θQ)−1

θ is a parameter vector, possibly including initial states, X0, eg . FX spot

HW-1F eg . has forward rate & vol knots, θ = [f1, . . . , fNF
, σ1, . . . , σNσ ]

There is a formal requirement for ∂θV (t) for callables1

∂θCVA = E0

[∫ T

0

1(V (t)>0) ∂θV (t) dt

]
1
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Overview Outline

MVA: Motivation and Logistics 1

MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

MVA = E0

[∫ T

0

IM(∂Q(t)V (t)) dt

]
IM is additional collateral to mitigate counterparty risk over MPoR (∼ 10D)

Bilateral IM: both c/parties post to 3rd -party custodians =⇒ needs funding

In practice, portfolio hedges attract bilateral &/or clearing-house IM too

MVA re�ects funding costs in valuations =⇒ spectre of FVA debate
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See Green and Kenyon ('15) for detailed derivation
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Motivation for IM

Bank Client

Exotic: $100M to Client

VM: $100M from Bank

Figure: Exposure, variation margin and initial margin
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Figure: Event sequence during the margin period of risk: a la Andersen et al . ('17)
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Exotic: $110M to Client

VM: $110M from Bank
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$10M from Bank

Initial Margin: 

$11M from Client

Custodian

Figure: Exposure, variation margin and initial margin

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 8/13



Overview Outline

Funding IM

Hedge P&L:

$10M to Bank

Hedge 
Counterparty

Bank Client

Exotic: $110M to Client

VM: $110M from Bank

Initial Margin: 

$10M from Bank

Initial Margin: 

$11M from Client

Custodian

Figure: Exposure, variation margin and initial margin

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 8/13



Overview Outline

Funding IM

Hedge P&L:

$10M to Bank

Hedge 
Counterparty

Bank Client

Exotic: $110M to Client

VM: $110M from Bank

Initial Margin: 

$10M from Bank

Initial Margin: 

$11M from Client

Custodian

Figure: Exposure, variation margin and initial margin

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 8/13



Overview Outline

MVA: Motivation and Logistics 1

MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR2

MVA = E0

[∫ T

0

IM(∂Q(t)V (t)) dt

]
IM is additional collateral to mitigate counterparty risk over MPoR (∼ 10D)

Bilateral IM: both c/parties post to 3rd -party custodians =⇒ needs funding

In practice, portfolio hedges attract bilateral &/or clearing-house IM too

MVA re�ects funding costs in valuations =⇒ spectre of FVA debate

2
See Green and Kenyon ('15) for detailed derivation

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 8/13



Overview Outline

Full Trade Impact on IM Requirements

Bank Client
Exotic Swaption

Initial Margin

Figure: IM due to client trade and hedge trade/s
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Overview Outline

MVA: Motivation and Logistics 1

MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR2

MVA = E0

[∫ T

0

IM(∂Q(t)V (t)) dt

]
IM is additional collateral to mitigate counterparty risk over MPoR (∼ 10D)

Bilateral IM: both c/parties post to 3rd -party custodians =⇒ needs funding

In practice, portfolio hedges attract bilateral &/or clearing-house IM too

MVA re�ects funding costs in valuations =⇒ spectre of FVA debate

2
See Green and Kenyon ('15) for detailed derivation
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Overview Outline

MVA: Motivation and Logistics 2

ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

Sensitivities over eg . swap rates & implied vols, Q = [S1, . . . ,SNS
, ν1, . . . , νNν ]

IMDelta ≈
√
∂′SV Σ ∂SV

Typical to use Jacobians to obtain Q-sensitivities from θ-sensitivities

This just translates risk over f1, σ1, . . . to risk over S1, ν1, . . .

∂QV = ∂θV (∂θQ)−1

What if Nθ 6= NQ? Nθ < NQ → pseudo-inverse, Nθ > NQ → bucketing2

The Nθ > NQ case will enforced by model design and bucketing will be used3

2
Could also use sophisticated shape-weighted bucketing, risk curves, etc.

3
Fries ('18) may have an alternative for this
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Overview Outline

Bucketing
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Figure: Bucketing to ensure invertible Jacocbians
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Overview Outline

Presentation Outline

CVA Greeks and MVA via �Future� Greeks

Future Greeks as a by-product of AD-on-LSMC

AD e�ciencies for LSMC: large-sample regression coe�cient dependencies
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Overview Outline

Accuracy of Future Greeks from LSMC 1

Our V̂i come from regressing V̂i+1 onto NB basis functions φ(Xi )

V̂p,i = φ(Xi,p) · β̂

β̂ = (φ(Xi )
′φ(Xi ))−1φ(Xi )

′V̂i+1

Can establish MSE of LSMC error in V̂p,i

MSE(V̂p,i |Xi ) = E[(V̂p,i − Vp,i )
2|Xi ]

= φ(Xp,i )
′var( β̂ |Xi )φ(Xp,i ) + (Vp,i − φ(Xp,i ) · β∞)2

Is the basis good for ∂θV̂i+1? How does the bias react? Need more �exibility?

What about the variance of ∂θV̂i+1? Need larger NP?
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Figure: AD-on-LSMC Values vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation
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Overview Outline

Accuracy of Future Greeks from LSMC 2

Many engineering techniques available to improve LSMC accuracy

1 Craft basis on a trade-by-trade basis and incorporate functions of θ

V (Xp,i , θ) ≈ β0 + β1 V
euro(Xp,i , θ) + β2 V

euro(Xp,i , θ)w(Xp,i , θ) + · · ·

2 Use control variates to reduce variance in Vi+1

V̂p,i+1 = φ(Xp,i ) · β + εp,i

3 Assess impact of using V̂i+1 vs. Ci+1,NT
as regressands: bias vs. variance

As for LSMC exposures, need engineering & validation in complex cases
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Overview Outline

Alternative to AD-on-LSMC: Direct Greek Regression

High-dimensional models, path-dependent products, complex payo�s etc .

Can expect performance of LSMC Greeks to su�er, need alternative

Can regress ∂θnCi+1,NT
directly onto dedicated basis, φθn(Xi , θ)

∂θnVp,i = E
[
∂θnCi+1|Xp,i

]
−→ ∂θn V̂p,i = φθn(Xi , θ) · γ̂θn

Main bene�t is that basis only has to tailor to ∂θnVi , not Vi & ∂θVi

Expensive: β̂ di�erentiated Nθ times is cheaper than γ̂θn computing Nθ times

Can mix-&-match, using AD-on-LSMC for all but di�cult members of θ
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Overview Outline

Presentation Outline

CVA Greeks and MVA via �Future� Greeks

Future Greeks as a by-product of AD-on-LSMC

AD e�ciencies for LSMC: large-sample regression coe�cient dependencies
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Overview Outline

Coe�cient Behavior and Dependencies in Large Samples

Dependence upon θ gets propagated through the regression matrix

∂θβ̂i = (φ(Xi )
′φ(Xi ))−1φ(Xi )

′∂θV̂i+1

Large-sample: ignore Xi -dependence in β̂, & thus θ-dependence in Xi

lim
NP→∞

∂Xi
β̂ ∂θXi = lim

NP→∞
∂Xi

(
(φ(Xi )

′φ(Xi ))−1φ(Xi )
′V̂i+1

)
∂θXi = 0

Propagating through ∂Xi
β̂ is as expensive as the main propagation of ∂θV̂i+1

Di�erentiating noise, ∂Xi
β̂ = ∂Xi

(β∞ − (β̂ − β∞)) = ∂Xi
(β̂ − β∞)) = ∂Xi

εβ̂

Still important in presence of outliers/over�t, eg . in small samples
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Overview Outline

AD-on-LSMC Accuracy: Large-Sample Propagation
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Figure: AD-on-LSMC Vegas with no ∂Xi
β̂ propagation vs. Brute-Force: 10-into-16

Bermudan at 5Y Observation
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Figure: AD-on-LSMC Deltas with no ∂Xi
β̂ propagation vs. Brute-Force: 10-into-16

Bermudan at 5Y Observation
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Overview Outline

AD-on-LSMC: Propagation Mode

AD evaluates chain rule in either tangent (forward) or adjoint (reverse) modes

Tangent costs (≈) O(Nins) while adjoint costs (≈) O(Nouts)

CVA : Nins = Nθ & Nouts = 1 =⇒ adjoint

MVA : Nins = Nθ & Nouts = NT · NP =⇒ tangent

MVA is not a Greek: Greeks over all exposures, ∂θV̂p,i , are inputs
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Overview Outline

Future Greeks for CVA Greeks and MVA (Appendix)

Mild di�erence between future Greeks for CVA, and future Greeks for MVA

Future Greeks for CVA include trajectory: requires additional propagation

∂θCVA = E0

[∫ T

0

1(V (t)>0) ∂θV (t) dt

]
Future Greeks for MVA are along a �xed trajectory: no additional propagation

MVA = E0

[∫ T

0

IM(∂θV (t)) dt

]
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Future Greeks for MVA are along a �xed trajectory: no additional propagation

MVA = E0
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MVA: Motivation and Logistics 1 (Appendix)

MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR4

MVA = E0

[∫ T

0

IM(∂Q(t)V (t)) dt

]
IM is additional collateral to mitigate counterparty risk over MPoR (∼ 10D)

Bilateral IM: both c/parties post to 3rd -party custodians =⇒ needs funding

In practice, portfolio hedges attract bilateral &/or clearing-house IM too

MVA re�ects funding costs in valuations =⇒ spectre of FVA debate

4
See Green and Kenyon ('15) for detailed derivation
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Swap IM Projections

0 1 2 3 4 5 6
Observation Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
it

ia
l 
M

a
rg

in
Initial Margin

Figure: Delta-IM for a vanilla swap: just applying SIMM rule, not CCH rule
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Swaption IM Projections
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Figure: Delta-IM for a swaption
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Bermudan IM Projections
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Figure: Delta-IM for a Bermudan
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