Markovian Projection to a Displaced Volatility Heston Model
Markovian Projection is an optimal approximation of a complex underlying process with a simpler one, keeping essential properties of the initial process. The Heston process, as the Markovian Projection target, is an example. In this article, we generalize the results of Markovian Projection onto a Heston model to a wider class of approximating models, a Heston model with displaced volatility. As an important application, we derive an effective approximation for FX/EQ options for the Heston model, coupled with correlated Gaussian interest rates. The main technical result is an option evaluation for correlated Heston/Lognormal processes.
Unlike the case of exactly solvable (affine) zero correlation or its uncorrelated displacement generalization, considered by Andreasen, non-trivial correlations destroy affine structure and exact solvability. Using the powerful technique of Markovian Projection onto a Heston model with displaced volatility, we produce an effective approximation and present its numerical confirmation.
Authors: A. Antonov, M. Arneguy and N. Audet
Markovian Projection is an optimal approximation of a complex underlying process with a simpler one, keeping essential properties of the initial process. The Heston process, as the Markovian Projection target, is an example. In this article, we generalize the results of Markovian Projection onto a Heston model to a wider class of approximating models, a Heston model with displaced volatility. As an important application, we derive an effective approximation for FX/EQ options for the Heston model, coupled with correlated Gaussian interest rates. The main technical result is an option evaluation for correlated Heston/Lognormal processes.
Unlike the case of exactly solvable (affine) zero correlation or its uncorrelated displacement generalization, considered by Andreasen, non-trivial correlations destroy affine structure and exact solvability. Using the powerful technique of Markovian Projection onto a Heston model with displaced volatility, we produce an effective approximation and present its numerical confirmation.
Authors: A. Antonov, M. Arneguy and N. Audet
Authors
Dr. Alexandre Antonov
Dr. Antonov received his PhD degree from the Landau Institute for Theoretical Physics in 1997 and joined Numerix in 1998, where he currently works as a Senior Vice President of Quantitative Research. His activity is concentrated on modeling and numerical methods for interest rates, cross currency, hybrid, credit and CVA. Dr. Antonov is a published author for multiple publications in mathematical finance, including RISK magazine and a frequent speaker at financial conferences.